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Control of global instability
in a non-parallel near wake
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(Received 12 November 1996 and in revised form 28 September 1999)

The effect of base suction on a plane wake was found to produce significant changes
in wake dynamics. The wake is produced by merging two boundary layers from the
trailing edge of a splitter plate in a two-stream water tunnel. A threshold suction
speed exists which is approximately equal to half of the free-stream velocity. If the
suction speed is below the threshold, the wake flow is unstable. If the suction speed
is above the threshold, the wake becomes stable and no vortex shedding is observed.
In the present experiment, the suction technique can stabilize a wake at a maximum
tested Reynolds number of 2000.

The suction significantly reduces the length of the absolutely unstable region in
the immediate vicinity of the trailing edge of the splitter plate and produces a non-
parallel flow pattern, resulting in the breakdown of global instability. The global
growth rate changes from positive (unstable flow) to negative (stable flow) at the
suction speed equalling 0.46 of the free-stream velocity. The threshold suction speed
can be accurately predicted by the global linear theory of Monkewitz et al. (1993)
with a non-parallel flow correction.

1. Introduction
The vortex shedding that appears downstream from bluff bodies above a critical

Reynolds number has been studied since the turn of this century. Vortex shedding
induces drag, generates noise and causes structure vibration. During the past few
decades, several techniques have been developed to control it. Roshko (1955) investi-
gated wake control methods to reduce the drag on the flow past a circular cylinder.
A thin partition placed along the centreline of the wake, downstream of the cylinder,
extending four or five diameters, was found to prevent Kármán-type vortex shedding
and reduce the drag coefficient from 1.1 to 0.7. Similarly, Wood (1964, 1967) reduced
the strength of individual vortices by blowing at the trailing edge.

After 1985, the concepts of absolute and convective instabilities (Huerre & Monke-
witz 1985, 1990) have provided new physical insights into wake control. The difference
between absolute instability and convective instability is that the impulse response of
a fluid system can propagate in both upstream and downstream directions in an ab-
solutely unstable flow, whereas it can only propagate in the downstream direction in a
convectively unstable flow region. Therefore, a flow system that contains a sufficiently
large region of absolute instability will respond to external forcing by developing
time-amplifying global oscillations, a response that is fundamentally different from
that of a system that is convectively unstable everywhere. In free shear layer flow, the
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absolute instability analysis was first applied in the mixing layer by Huerre & Monke-
witz (1985). The mixing layer becomes absolutely unstable when two free streams are
in opposite directions and the back flow (negative) velocity is greater than 0.135 of
the forward flow (positive) velocity. In jet flow, Strykowski & Niccum (1991) observed
the onset of absolutely unstable flow oscillations in an axisymmetric counter-flowing
jet when the back flow velocity is greater than 0.138 of the jet velocity. In wake
flow, both types of instability exist. The near wake is governed by absolute instability.
The wake then changes to convective instability at a short distance from the solid
boundary due to the rapid filling of the velocity deficit. In the absolutely unstable
region, wake flow acts as a resonator where all unstable disturbances are self-excited
or time-amplified. In the convectively unstable region, wake flow is similar to a spatial
amplifier in that all unstable frequencies (for small-amplitude perturbations) will grow
exponentially along the downstream direction. Therefore, the disturbances will first
resonate in the absolutely unstable region and then serve as an initial perturbation in
the convectively unstable region.

Numerical and experimental evidence indicates that the wake instabilities are
strongly influenced by an absolutely unstable region in the near wake. This fact
suggests the possibility of controlling global flow characteristics through modification
of the streamwise velocity profiles at the origin of wake flow. Some methods for
controlling Kármán vortex shedding in the near wake have been proposed, and are
briefly reviewed in the following. Wood (1964, 1967) demonstrated the effects of
reducing the strength of individual vortices by blowing at the trailing edge. Bearman
(1967) also demonstrated that sufficient base bleed leads to a reduction of base drag.
Hanneman & Oertel (1989) successfully suppressed vortex shedding from bluff bodies
by bleeding fluid from the blunt base in their numerical simulation. Strykowski &
Sreenivasan (1990) placed a small control cylinder with a diameter of typically 1

8
to

1
20

of the primary cylinder diameter in the near wake of the primary cylinder and
suppressed vortex shedding at a Reynolds number of about 80. The most effective
location for the suppression of vortex shedding is generally in the shear layers around
the mean recirculation region. The effect of the control cylinder is speculated to be
the breaking of the mean flow symmetry and the cancellation of the vorticity which
are responsible for the reduction of absolute instability. Another well-known method
for suppression of vortex shedding from bluff bodies at a low Reynolds number is
through heat addition to the near wake. The connection of this effect to local stability
properties was investigated by Yu & Monkewitz (1990). The primary purpose of
heating was to decrease local absolute growth rates by reducing the fluid density of
the near wake. The above mentioned studies have shown that Kármán vortex shedding
can be significantly manipulated by a small modification to the near wake. However,
most of these control techniques are effective only at a low Reynolds number. In the
present study, base suction is used to provide an approach to wake flow control at a
Reynolds number of 2000, the wake becoming globally stable (Leu & Ho 1992a, b,
1993). This experimental finding is consistent with the numerical simulation works of
Hammond & Redekopp (1997) where a non-dimensional threshold suction speed of
0.4 is reported at Re = 120 (for uniform suction profile).

The paper is based on Leu’s PhD thesis (1994). Flow visualization experiments are
first used to present the remarkable change in a wake flow with suction control. Then,
the threshold suction speed is determined and the stability characteristics of the wake
flow are identified by experimental methods. The changes of the near-wake flow field
from subcritical to supercritical suction are examined. Finally, the prediction of the
threshold suction speed, based on the global linear theory of Monkewitz, Huerre &
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Figure 1. (a) Schematic of the water channel (not drawn to scale). (b) Trailing edge configuration
and coordinate system.

Chomaz (1993), and the description of wake flow dynamics by the Stuart–Landau
equation are presented.

2. Experimental facilities and instrumentation
The experiments were performed in an open surface water channel. Figure 1(a)

shows a sketch (not to scale) of the water channel. The channel was designed for
studies of the wake/mixing layer. The stagnation chamber is separated into two
compartments by a vertical splitter plate. Flow in each compartment is supplied by
a pump. Each pump is controlled by a valve. The velocity ratio between the two free
streams can be easily adjusted by these two valves. The water channel includes three
parts: a stagnation chamber, a splitter plate and a test section. Water is pumped
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from the reservoir into the stagnation chambers. A perforated plate, honeycomb
and six layers of screens are used to improve the flow uniformity and to reduce
the turbulence level. The splitter plate is placed vertically to avoid the troublesome
problem of removing air bubbles from the screens. The test section is equipped with
a glass window on top to eliminate the free-surface wave. The width and height of
the test section of the water channel are 40.0 and 20.0 cm respectively. The maximum
free-stream velocity U∞ is 20 cm s−1. The typical turbulence level in the test section
is about 0.6% of the time-averaged velocity. At the end of the water channel, two
4 in. diameter PVC pipes serve as return passages to the upstream reservoir. The
trailing edge of the splitter plate (figure 1b) is a suction slot with width D = 1.0 cm.
Throughout the paper the Reynolds number is based on the free-stream velocity U∞,
and the width of the suction slot D. The spanwise dimension of the suction slot is
20D and the Z-coordinate from the bottom wall to the top glass window in the test
section is Z/D = 0 to 20. Inside the hollow splitter plate region, a perforated tube
is connected to a third pump. The third pump provides suction at the trailing edge
of the splitter plate. Two fine mesh screens and a plastic honeycomb section made of
stacks of straws are placed between the perforated tube and suction slot to reduce
the turbulence level and the non-uniformity of suction in the spanwise direction. The
configurations of the trailing edge and coordinate system are shown in figure 1(b).
The suction speed Us (figure 1b) is defined as the absolute value of the negative
suction velocity at the (X/D, Y /D) = (0, 0) location. The turbulence level is about
1.0% of the time-averaged suction speed Us. The non-uniformity of suction in the
spanwise Z-direction is less than 2% of the time-averaged suction speed.

The flow is visualized by using hydrogen bubbles. The velocity measurements are
obtained by a one-component DANTEC 55X laser Doppler anemometer (LDA)
system. The system is set up in forward scatter mode and equipped with a Bragg
cell frequency shifter for reversing flow detection. The water channel is seeded with
fluorescent coated plastic particles with sizes ranging from 20 to 50 µm. The scattered
light from the particles passing through the measuring volume is received by a photo-
multiplier tube (PMT). The PMT signals are analysed by a TSI IFA550 frequency
analyser.

The entire LDA optical system is mounted on a three-dimensional traversing
mechanism, which is controlled by an 80386 personal computer. The analog output
of the TSI IFA550 frequency analyser is digitized by a Data Translation DT2801A
analog-to-digital (A/D) converter. The fastest digitizing rate is 27.5 kHz. In all cases,
the digitizing frequency is about two orders of magnitude higher than the vortex
shedding frequency. Before the experiments, two-dimensional flow was verified by
looking at the time-averaged mean flow at several spanwise locations Z/D = 5,
10 and 15 in the Reynolds number range of the present study. The instantaneous
velocity profile most likely will not be two-dimensional: Barkley & Henderson (1996)
have shown that three-dimensional disturbances are absolutely unstable for Reynolds
number larger than 188.5. However, the present experiment shows that the observed
phenomena can be represented by two-dimensional analysis. The U and V velocities
(figure 1) are measured by rotating the LDA system by 90◦. By measuring the U
and V velocities in the centre horizontal (Z/D = 10) plane with very fine grids, the
spanwise vorticity, ωz , is obtained by the difference of ∂V/∂X and ∂U/∂Y whereby
the partial derivatives are calculated from the central difference of the U and V
time-averaged velocity fields.

A forcing device consisting of a rod and a vibrator is used to investigate the
stability of the wake flow. The forcing device vibrates the rod (diameter d = 1.0 mm)
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Figure 2. (a) Vortex shedding behind a flat plate with blunt base D = 1.0 cm, and (b) suppression
of vortex shedding behind the flat plate with base suction speed Us/U∞ = 0.5. Re = 650 or
U∞ = 6.5 cm s−1.

periodically with a sinusoidal motion. The control rod is placed at the neutral position
location of X/D = 0.5, Y /D = 0. The phase of the control rod is determined by
the output of a phase indicator. The phase indicator consists of a magnetic micro
switch (Honeywell 3AV2C) and a ferrous vane blade. The vane blade rotates with the
stepping motor. The stepping motor is controlled by an 80286 personal computer. The
computer sends the desired number of pulses in an exact time period. Therefore, the
frequency of the oscillating rod and the number of oscillating cycles can be controlled.

3. General features of a wake with suction
3.1. Flow visualization

The wake flow controlled by suction is first examined by hydrogen bubble flow
visualization in the water channel. The bubbles serve as flow tracers convected in the
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streamwise direction, which is from top to bottom in figures 2(a) and 2(b). When
suction is not applied, the two streams merge at the trailing edge of the splitter
plate. The flow is unstable due to the velocity shear. A Kármán vortex street can be
observed in figure 2(a). Here, the Reynolds number based on the free-stream velocity,
U∞, and the width of the suction slot, D, is about 650. After the suction is applied, the
flow is still unstable at low suction speeds. When the suction speed, Us, increases and
reaches a threshold level, a different type of wake flow occurs; the periodic vortices
are not observed (figure 2b). The stable wake flow seems to persist in the streamwise
direction. The suction speed at which the wake flow can be stabilized is defined as the
threshold suction speed, UTs , and it equals about one half of the free-stream speed of
the wake flow (Leu & Ho 1993). The statistical way of defining UTs will be discussed
in § 5.

3.2. Velocity signals

Figure 3 displays the time traces of the streamwise velocity inside the shear layer at
the location X/D = 5.0, Y /D = 1.0 for four different suction speeds. In the wake
flow without suction, the velocity time trace (figure 3a) shows an almost periodic
sinusoidal wave pattern which corresponds to the passage of vortices. As a suction
speed Us/U∞ = 0.24 is applied at the trailing edge of the splitter plate, the velocity
time trace (figure 3b) still shows similar periodic fluctuations but not as regular. As
long as the suction speed Us is less than the threshold, UTs , the flow is periodic
in time. However, once the suction speed Us/U∞ is greater than the threshold, e.g.
Us/U∞ = 0.68 (figure 3c), the time trace shows an almost constant velocity. The signal
indicates that the flow becomes globally stable, which confirms the flow visualization
results.

From the spectrum in an unstable wake flow, the dominant frequency, i.e. the
frequency with the highest amplitude in the energy spectra represents the vortex
shedding frequency in the wake flow (figure 4). When the suction speed is higher than
the threshold velocity, Us > UTs , the flow is stabilized. However, the background noise
in the water channel still produces disturbances to drive the flow. This is clear from
the velocity trace shown in figure 3(c), which displays the intermittent disturbances.
The spectra (figure 4) are broadband due to the intermittent pulse-type fluctuations.

3.3. The role of a stabilizing rod

We found that a thin rod with diameter 1.0 mm placed within the recirculation zone is
able to further stabilize the wake flow. The effects of the thin rod are demonstrated by
the velocity trace (figure 3d) and the energy spectra (figure 4). The flow becomes very
stable and the velocity remains constant for all time when the stabilizing rod is placed
near the centre ((X/D, Y /D) = (0.5, 0)) of the recirculation region. The spectrum is
at least two orders of magnitude lower than the case without a stabilizing rod at the
same suction speed. The almost flat energy spectrum indicates that the disturbances
have been reduced to the electronic noise level associated with the instrument.

Without the rod, appropriate base suction already can globally stabilize the wake
flow. The stabilizing rod is very helpful since most of the experiments in the ab-
solute/convective instability studies suffered from the signal-to-noise ratio problem.
Continuous background noise creates difficulty in identifying a fluid system as either
an absolute or convective instability. The control rod enables us to identify a flow
system in a very ‘clean’ environment.
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Figure 3. LDA velocity time trace and the short-time-averaged fluctuation level (SFL) at
(X/D, Y /D) = (5.0, 1.0) behind the flat plate for Re = 1400 and varying base suction: (a)Us/U∞ = 0,
(b) Us/U∞ = 0.24, (c) Us/U∞ = 0.68, (d) Us/U∞ = 0.74 with a control rod (diameter d/D = 0.1)
place at (X/D, Y /D) = (0.5, 0). The dashed line is the value of the critical reference velocity Urc in
§ 5.1.

4. Velocity field of the near wake
4.1. The flow reversal region

In free shear flows, the streamwise development is very sensitive to the initial con-
ditions (Ho & Huerre 1984). In the present case, the suction certainly affects the
flow near the origin and therefore changes the global features. In this section, the
time-averaged streamwise and transverse velocity components, U and V , in the near
field of the suction slot are reported. Velocity components at 900 survey stations in the
centre horizontal (Z/D = 10) plane of the water channel were obtained by LDA. The
velocity vectors in the case of a wake flow of free-stream velocity U∞ = 10.0 cm s−1

with threshold suction, Us/U∞ = 0.5, are shown in figure 5. The Reynolds number is
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Figure 5. Velocity vectors behind the flat plate with base suction speed Us/U∞ = 0.5 and
Re = 1000, U∞ = 10.0 cm s−1.

about 1000. The two arrow marks at −5.0 mm and 5.0 mm on the Y-axis indicate the
suction slot location. A region of reversed flow extending approximately 1.0 cm from
the trailing edge is observed. Inside the flow reversal region, two standing eddies are
present. By using the U and V velocities in figure 5, one can calculate the streamlines
by a mass balance. The corresponding streamlines are plotted in figure 6. A saddle
point was found in the streamline pattern. The dividing streamline which separates
the reversed flow region from the outer flow region shows that the fluid is being
sucked into the slot from a region approximately 3.0 mm in thickness each side of
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Figure 6. Streamline pattern of the wake flow behind a flat plate with base suction speed
Us/U∞ = 0.5 and Re = 1000, U = 10.0 cm s−1. It was computed by a mass balance from the
velocity flow field shown in figure 5.

the slot. A strongly two-dimensional (V 6= 0) flow around the saddle point can be
seen. This feature raises a concern about the validity of the parallel flow assumption
(dU/dX = V = 0) used in the local stability analysis. Hence, non-parallel flow effects
have to be considered in the present studies.

4.2. The location of the saddle point

A reversed flow region suggests the existence of an absolute instability in the wake flow
(Huerre & Monkewitz 1985, 1990). The extent of the absolutely unstable region can be
approximately indicated by the distance from the suction slot to the saddle point. The
position of the saddle point is obviously a function of the suction speed. However,
the method used in figures 5 and 6 for determining the saddle point position is
cumbersome. Since the wake flow velocity profile is symmetric, an alternative method
can be used. The streamwise velocity distributions along the centreline (Y /D = 0)
of the wake with free-stream velocity U∞ = 10.0 cm s−1 are shown in figure 7. A
typical centreline distribution is a negative velocity region followed by a positive
velocity region. The zero crossing point is the saddle point location. At zero suction,
the negative velocity is very small and the saddle point is located about 30 mm
downstream from the suction slot. When the suction speed is increased, the centreline
velocity changes from a negative value to a positive value within a short distance.
The zero crossing point, i.e. the saddle point, moves closer to the trailing edge. The
locations of the saddle points at different suction velocities, are shown in figure 8. As
the suction is applied, the change in the saddle point location is very large. When
the suction is close to the threshold speed, the position of the saddle point is about
one slot width downstream from the suction slot. For further increase in the suction
speed, the position of the saddle point moves upstream but at a much slower rate.

Since the position of the saddle point can approximately represent the length of the
absolutely unstable region, the actual length of the absolutely unstable region will be
slightly larger than the recirculation zone length. For details see § 5.2. The absolutely
unstable region will reduce its size with the increase of suction. Chomaz, Huerre &
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Figure 7. Streamwise velocity distribution along the centreline (Y /D = 0) at different suction
speeds and Re = 1000, U∞ = 10 cm s−1.
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Figure 8. Saddle-point locations of the plane wake with different base suction speeds
(Re = 1000, U∞ = 10.0 cm s−1).

Redekopp (1990) suggested that the absolute instability region must have a sufficient
size in order to sustain a global unstable mode. Therefore, it is plausible that the
absolutely unstable region may be reduced in such a way that the global mode may
no longer exist. On the other hand, the temporal growth rates of streamwise velocity
profiles will increase with increasing suction. Whether global instability will exist or
not depends on the relative effects of these two factors.

4.3. Inflow boundary layer profiles

The streamline pattern in figure 6 shows that most of the fluid sucked into the slot
comes from a thin layer near the solid boundary. This suggests that the boundary
layer must be significantly modified by the suction process. Furthermore, the vorticity
that drives the instability resides almost entirely inside the layer. Therefore, it should
be interesting to investigate the effects on the inflow boundary layers caused by the
suction.
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Figure 9. Boundary layer velocity profiles at the separation point on the trailing edge of the
splitter plate with varying base suction for Re = 1600, U∞ = 16.0 cm s−1.

Time-averaged boundary layer velocity profiles right at the separation point on
the trailing edge of the splitter plate were measured at four different suction speeds
and are shown in figure 9. The boundary layer velocity profile without suction is
first compared with the Blasius boundary layer velocity profile. The comparison
confirms that no streamwise gradients exist in the free stream when the suction is
turned off. The velocity inside the boundary layer is increased by the suction as
compensation for the mass depletion through the suction slot. The distribution of the
additional velocity caused by suction can be obtained by subtracting the boundary
layer velocity profile without suction from the boundary layer velocity profiles with
suction. Wall-jet-type velocity profiles are observed (figure 10a). The transverse region
affected by the suction extends to about twice the thickness of the natural boundary
layer thickness. These wall-jet-type profiles (Schlichting 1979) can be collapsed into
a non-dimensional curve (figure 10b). The velocity scale used in the non-dimensional
plot is the maximum velocity, Umax , in the wall-jet-type profile. The transverse length
scale, Ymax/2, is the distance between the wall and the position where the velocity
equals one half of Umax . Therefore, the boundary layer velocity profile with suction
can be decomposed into the zero-pressure-gradient Blasius velocity profile and the
wall jet profile under the favourable pressure gradient caused by the suction.

4.4. The vorticity field

The instability in a velocity shear region is mainly driven by vorticity. It is thus
interesting to know how the vorticity distribution is affected by the suction. Based
upon the time-averaged velocities, U and V , at the threshold suction speed in figure 5,
it is easy to obtain the time-averaged vorticity field. The vorticity distribution and the
streamline pattern are plotted together in figure 11. The magnitude of the vorticity
represented by the greyscale bar is normalized by the free-stream velocity U∞ and
the width of slot D. It is evident that the region with the highest vorticity is located
inside the dividing streamlines (figure 11). Since all of the vorticity which drives the
instability is produced at the solid walls if there is a pressure gradient, it is easy to
calculate the vorticity production from the boundary layer velocity profiles in figure 9.
In figure 6, it is also noticed that the vorticity-contaminated fluid in the boundary layer
will be removed by the suction. Following this idea, one may postulate that the stable
wake with threshold suction can be described as the balance of vorticity production
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Figure 10. (a) Wall jet profiles, obtained by subtracting the Blasius velocity profile from the
boundary layer profiles at different suction speeds (Re = 1600, U∞ = 16.0 cm s−1). (b) Self-similar
wall jet profile after the non-dimensionalization by Umax and Ymax/2.

on the solid walls and its removal by the suction. To illustrate this postulation, the
residual vorticity ratio is defined as

Residual vorticity ratio =

[
Vorticity outside the diving streamline

in the wake flow with suctionUs

]
[

Vorticity production in the boundary layers
of an unstable wake when Us/U∞ = 0

] .
The residual vorticity outside the dividing streamline starts to decrease from 100% to
about 20% of the vorticity contained in the initial boundary layers of the wake flow
without suction, when the suction speed reaches the threshold level (figure 12).

5. The threshold suction speed and global stability
5.1. Quantitative determination of the threshold suction speed

Based upon flow visualization and the velocity traces (figures 2a, b and 3), the wake
becomes stable when the suction velocity is higher than about half of the free-stream
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velocity. Here, we will establish a quantitative definition for the threshold suction
speed.

Figure 3(a–d) displays the time traces of streamwise velocity at the location X/D =
5.0, Y /D = 1.0 with free-stream velocity U∞ = 14.0 cm s−1 (Re =1400). The velocity
traces change from a continuous periodic signal to an intermittent spiky fluctuation
and finally to an almost constant value as the suction increases. A method to determine
the threshold speed from the intermittent nature of the signal was developed. A short
time-averaged fluctuation level (SFL) of the velocity signal similar to the VITA signal
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processing scheme (Blackwelder & Kaplan 1976) is defined as

SFL(t) =

{
1

T

∫ t+T

t

[U(τ)− Û(τ)]2 dτ

}1/2

. (1a)

Note that T is the period of the vortex shedding when Us/U∞ < 0.5 or the period

of the vortex shedding without suction when Us/U∞ > 0.5, and Û is a short time-
averaged velocity, defined as

Û =
1

T

∫ t+T

t

U(τ) dτ. (1b)

The profile of SFL(t) clearly indicates the intermittency of the signal. In figures 3(a–c),
the time trace signal changes from sinusoidal to intermittent and finally to an almost
constant value as the suction increases. The SFL(t) for figures 3(b) and 3(c) shows
the intermittent feature.

The value of SFL indicates the stability of the flow. In the range tested, SFL(t)
varies from about 0.7% of U∞ (0.1 cm s−1 in figure 3d) to 28% of U∞ (4 cm s−1 in
figure 3b). In figure 3(d), the value of SFL(t) is much lower than that of figure 3(a–c).
Note that the scale of the SFL signal is plotted on the right-hand side of figure 3(d).
The probability of SFL(t) being less than a reference value is defined as

P (Ur) = Prob (SFL 6 Ur) = lim
T̂→∞

∑k
i=1 ∆ti

T̂
, (2a)

where ∆ti is the time interval in which SFL 6 Ur . A long time history record
(T̂ = 10 240 cycles) is used in this experiment. The probability distributions at
various suction speeds are shown in figure 13. When the value of Ur changes from 0
to 4 cm s−1, P (Ur) increases from 0 and approaches 1. When the stabilizing rod is not
there (the ‘without rod’ cases in figure 13), the probability of high velocity fluctuation
signals (Ur > 2.0 cm s−1) increases with increasing suction speed from Us/U∞ = 0 to
0.24. This indicates that at this Reynolds number small suction favours instability.
The velocity time trace in figure 3(b) or in the linear global growth rates in figure 19
below seem to support this statement. As soon as Us/U∞ > 0.49, the probability
of low velocity fluctuation signals (Ur < 2.0 cm s−1) starts to increase. For example,
P (Ur = 1.0 cm s−1) increases to 40% at Us/U∞ = 0.49 and 70% at Us/U∞ = 0.69 in
figure 13.

A critical reference velocity Urc is defined as the minimum value of reference velocity
Ur at different suction speeds at which probability distribution functions P (Ur) reach
their asymptotic value. In other words, the value of Urc represents a background
velocity fluctuation reference at the measuring point (X/D, Y /D) = (5.0, 1.0) within
the stable wake. When the stabilizing rod is used (the ‘with rod’ cases in figure 13),
the critical reference velocity Urc is found to be Urc = 0.3 cm s−1 (or Urc/U∞ = 2.1%)
and remain constant in the stable wake flow as long as the suction speed is higher
than 70% of the free-stream velocity (see Us/U∞ = 0.7 and Us/U∞ = 0.74 cases in
figure 13). Hence, Urc = 0.3 cm s−1 or Urc/U∞ = 2.1% is taken as a stringent criterion
that represents the background velocity fluctuation for determining whether the wake
is stable or not. We define a stable intermittency function I(Us/U∞) based on Urc

which measures the percentage of time in which the wake is stable:

I

(
Us

U∞

)
= Prob

[
SFL(t) 6

Urc

U∞
= 2.1%

]
= lim

T→∞

∑k
i=1 ∆ti

T̂
, (2b)
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Figure 13. Cumulative probability distribution function P (Ur) of the velocity trace measured at
(X/D, Y /D) = (5.0, 1.0) with varying suction speeds and Re = 1400. The corresponding velocity
traces have been partially shown in figure 3.
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Figure 14. Stable intermittency I as function of suction speed (Us/U∞) at free-stream velocities
U∞ = 10 cm s−1 (Re = 1000), U∞ = 12 cm s−1 (Re = 1200), and U∞ = 14 cm s−1 (Re = 1400).

where ∆ti is the time interval in which SFL(t) 6 Urc . If the value of I(Us/U∞) is
high, it means that the value of SFL is low and the wake is stable. A sharp rise of
I(Us/U∞) is observed as the suction speed reaches 50% of the free-stream velocity in
figure 14, which confirms the flow visualization results (figure 2b). This suction speed
is defined as the threshold suction speed, UTs .

5.2. Local stability analysis

To gain a deeper understanding of the wake stabilized by suction, it should be helpful
to do a hydrodynamic stability analysis. In principle, the linear hydrodynamic stability
analysis in a shear flow starts with a base flow, which mathematically is the solution
of the steady flow equations. One then considers this solution with perturbation
superimposed, and enquires whether this perturbation grows or decays in time. For
linear analysis, the amplitude of perturbations is limited to low level. A time-averaged
velocity profile for local analysis is appropriate. The other issue is the viscous effect.
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Monkewitz (1988) investigated the effect of viscosity on the hydrodynamic instabilities
in the low-Reynolds-number two-dimensional wake flow. He calculated the stability
characteristics in the wake flow by using measured time-averaged velocity profiles
behind a cylinder and found that the flow is practically inviscid when the Reynolds
number is higher than 100. The definition of Reynolds number in the work by
Monkewitz is based on the average mean velocity U1/2 = (UY = 0 + U∞)/2 and local
half-width b1/2 of the wake, which is defined by U(b1/2) = U1/2. In the present
experiments, the range of Reynolds number (based on the same velocity scales U1/2

and length scale b1/2) is from 150 to 650. Therefore, the inviscid Rayleigh equation is
adequate: (

U − ω

k

)(d2Φ

dy2
− k2Φ

)
− d2U

dy2
Φ = 0, (3)

where U(y) is the steady-state mean velocity profile, ω is frequency, k is wavenumber,
and Φ is defined in the form of the normal modes of the perturbation stream function

Ψ (x, y, t) = Φ(y)ei(kx−ωt).

The Rayleigh equation (3) involves the second derivative of the mean velocity profile.
Thus, an accurate fit of the velocity profile is critical. Here, the experimentally
measured velocity profiles are curve-fitted with a two-parameter (R,N) equation
(Monkewitz & Nguyen 1987)

U(y) = 1− R + 2RF(y), (4a)

where

R =
UY=0 −U∞
UY=0 +U∞

, (4b)

F(y) = [1 + sinh2N(y sinh−1 1)]−1. (4c)

Note that UY=0 is the dimensional velocity at the location Y = 0 and the terms in
(4a) are made non-dimensional with average mean velocity U1/2 = (UY=0 + U∞)/2
and local half-width b1/2 of the wake, which is defined by U(b1/2) = U1/2. The
mean velocity profiles for the wake flow at Re = 1600 with varying suction speeds
Us/U∞ = 0, 0.19, 0.4, 0.5 and 0.62 are surveyed at several downstream locations and
shown in figure 15. To determine the best fitting two-parameter (R,N) equation for
the velocity profiles in figure 15, the average mean velocity U1/2 and local half-width
b1/2 of the wake are used to non-dimensionalize the measured velocity profiles. The
value of parameter R can be easily decided from UY=0 and U∞ in (4b). Different
values of N are chosen to curve fit the non-dimensional velocity profile such that the
standard deviation between the non-dimensional velocity profile and two-parameter
(R,N) equation (4) is less than 1.0% of free-stream velocity U∞.

The best-fit parameters (R,N) at each streamwise location are listed in figure 15.
In the wake flow without suction (figure 15a), the velocity profile starts at N = 2.0
and R = −1.004 right behind the body and approaches N = 1.4 and R = −0.492
at X/D = 4.4. The slightly reverse flow region (i.e. the R < −1 region) can be seen
between X/D = 0 and 2.4. In the wake with suction (figure 15b–e), the profiles
are all bell-shaped and the shape parameter N does not change very much. The
typical values are between N = 2.0 just behind the trailing edge and N = 1.0 further
downstream. A large decrease in the value of R at the initial velocity profiles from
R = −1.435 (figure 15b) to R = −4.061 (figure 15e) can be seen and indicates the
increasingly reversed flow due to the increasing suction.
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The maximum deviation between the two-parameter curve fitting and the exper-
imental velocity profile is less than 1% in all measurements. The slight overshoot
in the shoulder region of the velocity profile is the main cause of these deviations.
Monkewitz (1988) studied the overshoot effects on the stability analysis. The variation
of eigenvalues |ω0| and |k0| is less than 3% for an overshoot, U∞/Umax , between 1.0
and 0.85, where eigenvalues k0 and ω0 are the complex wavenumber with zero group
velocity ((dω/dk)(k0) = 0) and its corresponding absolute frequency (ω0 = ω(k0))
respectively. In the present case, the maximum overshoot U∞/Umax is about 0.9.
Therefore, the effect on the eigenvalues should be less than 3%.

The absolute frequency, ω0, was calculated by solving the Rayleigh equation with
boundary conditions[

φ

φ′

]
(y →∞) =

[
1

−k
]

e(−ky) (5a)

and [
φ

φ′

]
(y → 0) =

[
1

0

]
‘sinuous mode’. (5b)

We have calculated the complex wavenumber, k0, which has a zero group velocity (dω/
dk)(k0) = 0 and its corresponding absolute frequency ω0 = ω(k0). The dispersion
relation was found by a shooting method. For a given real k and an appropriate
initial guess ω, equation (3) with boundary conditions (5) is integrated from y = +∞
to y = yc and from y = 0 to y = yc by using a standard fourth/fifth-order Runge–
Kutta scheme. If the initial guess is an eigenvalue, the solutions from both sides
will match at y = yc. Otherwise, the frequency ω is updated by Newton’s method
until the matching criterion is satisfied. Then, the saddle point (dω/dk)(k0) = 0 in
the complex k-plane can be found by Newton’s method. The maximum principle in
complex analysis, which states that the maximum and minimum must appear on the
boundary, automatically excludes the possibility of finding a maximum or minimum.

In the codes for wake instability studies, the boundary condition for y = +∞ is
applied at the boundary y = Y /b1/2 = 4.0 since the velocity profiles in figure 15 remain
unchanged when y > 4.0. In the present studies yc = Y /b1/2 = 1.0 is chosen (the
choice of yc can be arbitrary in the iteration Runge–Kutta procedure). Figure 16(a)
shows the computed results of the temporal growth rate ω(D)

0i as a function of the
streamwise coordinate, X/D, in the wake flow Re = 1600 at different suction speeds.
The superscript (D) is used to indicate non-dimensionalization by using the free-
stream velocity U∞ and the width of the suction slot D. The location where ω(D)

0i

varies from a positive to a negative value indicates a change from absolutely unstable
flow to absolutely stable flow. Figures 15 and 16(a) indicate that the centreline velocity
does not have to be negative for absolute instability. For a typical shape parameter
N, which varies from 1.0 to 2.0, the velocity profiles are absolutely unstable if the
centreline velocity is less than 5% of the free-stream velocity.

The maximum temporal growth rate ω(D)
0i becomes larger when the suction speed

increases. This is expected due to the increased back flow induced by the suction.
The real part of ω(D)

0 , ω(D)
0r , at each downstream location is shown in figure 16(b). The

maximum ω
(D)
0i as a function of the suction speed is shown in figure 17. No clear

change of the trend is observed around UTs .
It is known that local absolute instability is a necessary but not a sufficient

condition for global instability (Chomaz, Huerre & Redekopp 1988). Chomaz et al.
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Figure 15. For caption see facing page.
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Figure 15. Time-averaged mean velocity profiles at different streamwise locations at
(a) Us/U∞ = 0, (b) 0.19, (c) 0.40, (d) 0.50, (e) 0.62 (D = 1.0 cm, U∞ = 16.0 cm s−1, Re = 1600).

(1990) proposed a global instability criterion for slowly varying base flow:

GIC =

∫ Xa/D

0

√
ω

(D)
0i dx > O(1). (6)

Note that Xa is the length of the absolutely unstable region and here ω(D)
0i is non-

dimensional temporal growth rate through the use of the free-stream velocity U∞
and the width of the suction slot D. Xa decreases with increasing suction speed
(figure 16a). Based upon the data in figures 16 and 17, GIC is calculated and shown
in figure 18. GIC smoothly decreases with increasing suction speeds. Again, there is
no clear indication of a globally stable flow near UTs .

5.3. The global instability analysis with non-parallel flow correction

In the case of a parallel flow, the temporal frequency ω0 should remain the same along
the streamwise direction. Hence, the variations of the absolute frequency ω0 along
the streamwise direction indicate the non-parallel characteristics, especially in a wake



364 T.-S. Leu and C.-M. Ho

0.8

0.4

0

–0.4

0 1 2 3 4 5

(a)

x0i
(D)

Us/U∞= 0
UUss//UU∞∞== 0.19
UUss//UU∞∞== 0.4
UUss//UU∞∞== 0.5

(b)
0.8

0.7

0.6

0.5

0 1 2 3 4 5

x0i
(D)

X/D

Figure 16. (a) Absolute growth rate ω(D)
0i and (b) Real part of absolute frequency ω(D)

0r ,
as functions of X/D at different suction speeds.

with suction. In the wake flow without suction, the two parameters R and N of the
mean velocity profiles at different streamwise locations in figure 15(a) change in such a
way as to keep the absolute growth rate, ω0i, constant with increasing X/D. Figure 16
shows the fairly flat distribution along the streamwise locations from X/D = 0 to
X/D = 3 at Us = 0. When the suction is applied at the trailing edge of the wake
flow, the maximum absolute growth rate increases and the zone with constant ω0i

shortens. At the same time, the slopes of absolute growth rate along the streamwise
direction become steeper with increasing suction speeds, i.e. the flow becomes more
non-parallel with the increasing suction speed.

By applying a global linear stability analysis derived for weakly non-parallel shear
flow, Monkewitz et al. (1993) showed that the non-parallel correction term is deter-
mined by the slope of the absolute frequency ω0(X

t) at the dominant turning point,
Xt, of the WKBJ approximation. The region around the turning point, Xt, can be
viewed as a wavemaker for the entire flow field. The global frequency of the entire
flow field is not locally determined but is instead determined by a region near the
turning point. The global frequency, ωG, can be split into the dominant absolute
frequency ω0(X

t), abbreviated as ωt
0, at the turning point, Xt, i.e. the frequency

of the mode with zero group velocity at turning point, Xt, and a small correction
term, ωε, corresponding to the non-parallel effect. The global mode frequency for the
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non-parallel flow is given by

ωG ∼ ωt
0 + ωε = ωt

0 + ε2/3
{
ωt
X(2ωt

X/ω
t
kk )−1/3a0

}
, (7a)

where a0 (= 2.338) is a zero of the Airy function, the superscript t indicates the
turning point Xt of the WKBJ approximation, and X = εx is the ‘slow’ coordinate
in the terminology of the method of multiple scales (Bender & Orszag 1978). The
parameter

ε ≡ λtyp{δ−1(x)[dδ/dx]}typ � 1 (7b)

characterizes the degree of the spatial inhomogeneity of the basic flow by providing
a measure of the change of the typical cross-stream length scale δ(x) over one typical
instability wavelength λtyp . Monkewitz et al. also found that the turning point in the
wake flow with suction is at the origin of the wake, Xt = 0. Hence, the non-parallel
correction term strongly depends on the initial slope of the absolute frequency at
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X/D = 0 in figures 16(a) and 16(b). The zero initial slope of the natural wake
without suction indicates that the parallel flow assumption can be applied. As the
suction speed, Us/U∞, increases, the negative slope of the absolute growth rate ω(D)

0i in

figure 16(a) and the positive slope of ω(D)
0r in figure 16(b) no longer remain negligible.

The non-parallel correction term, ωε, increases significantly.
In determining the non-parallel correction term, ωε, equation (7a) is first re-non-

dimensionalized by using the width of the suction slot D and the free-stream velocity
U∞ and becomes

ω
(D)
G ∼ ωt(D)

0 + a0{ωt(D)

x (2ωt(D)

x /ωt(D)

kk )−1/3}. (7c)

In (7c), the parameter ε vanishes. The ωt(D)

kk term is the second derivative of the absolute

frequency ω(D)
0 in the complex k-plane, which has been calculated by Newton’s iteration

method during the finding of the saddle point (dω/dk)(k0) = 0. The ωt(D)

X term is the

first derivative of the absolute frequency ω(D)
0 at the turning point Xt = 0 with respect

to streamwise coordinate X/D which can be obtained by second-order-accurate finite
difference approximation at the location X/D = 0 in figure 16.

For a typical mean velocity profile of the wake flow with suction in figure 15,
the velocity ratio parameter R varies from −1 (Us/U∞ = 0) to −4 (Us/U∞ = 0.62);
the shape parameter changes from a top-hat shape (N = 2) to a far-wake profile
(N = 1). In comparison with the absolute frequency ω(D)

0 in figure 16 and the R and

N parameters in figure 15, the absolute frequency ω(D)
0 , especially the temporal growth

rate ω(D)
0i , was found to be more sensitive to the velocity ratio parameter R than the

shape parameter N. Therefore, the ωt(D)

x term in the non-parallel correction term of
(7c) is sensitive to the change of the velocity ratio parameter R around the X/D = 0
region, which is defined from the velocity distribution near the suction slot. Since it is
possible to measure the reverse flow near the suction slot accurately by using LDA,
highly accurate and complete mean flow data are available in our stability analysis.

The results of the global growth rate through the use of (7c) are shown in figure 19.
The ascending curve with open circle symbols which are all positive shows that
the flow is locally absolutely unstable based upon the leading order of the global
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growth rate at the turning point, ω(D)
0i (Xt = 0). If the non-parallel correction term is

considered in (7c), the global growth rate changes its sign from positive to negative
when the suction speed is equal to about 0.46 of the free-stream velocity. In other
words, the global instability breaks down and the flow becomes stable at the suction
speed equalling 0.46 of the free-stream velocity U∞, which is very close to the threshold
suction speed 0.5U∞ determined experimentally (§§ 3.1 and 5.1). This study has clearly
illustrated the effect of non-parallel flow on global instability.

5.4. Self-excitation of the wake

A wake is a flow self-excited by the oscillations produced by absolute instability. This
concept can be best illustrated by a transient experiment in the present case where
the absolute instability can be turned on or off through the non-parallel mechanism.

Figure 20 shows the transient behaviour in the wake flow by measuring the velocity
trace at the location (X/D, Y /D) = (3.0, 0.5). The non-parallel effect is not strong
and the near wake is absolutely unstable so that large-amplitude velocity fluctuations
exist in the flow. At the instant of t = 6.0 s, a supercritical suction speed (i.e.
Us > UTs ) is switched on. In 2 s, the non-parallel flow region is established. The
growth rate of the absolute instability becomes less than zero. The velocity trace
changes from large-amplitude oscillations to a nearly flat signal (a thin rod placed at
(X/D, Y /D) = (0.5, 0) is used in this experiment to further stabilize the flow in the
supercritical suction case). This experiment has clearly demonstrated that the wake
flow can be globally stable if the self-excitation is ‘shut off’ by the non-parallel flow
caused by suction in the near-wake region.

5.5. The impulse response in a globally stable flow

When the absolute instability region is significantly affected by the non-parallel near-
wake region produced by suction, it would be interesting to examine the response of
the stabilized flow to artificial perturbations. It is known that background noise can
obscure an experiment involving global instabilities (Huerre & Monkewitz 1990). We
therefore employed the stabilizing rod, which can significantly reduce the background
noise (figure 4). At the same time, the rod can be vibrated by a driving mechanism at
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Figure 21. Impulse train response of U-velocity fluctuation at (X/D, Y /D) = (3.0, 0.5) for the plane
wake flow at Re = 1600 with suction Us/U∞ = 0.75 and five transverse pulses by oscillating a rod
at 1.7 Hz amplitude of 0.05D.

a chosen frequency (Leu 1994) and serve as a forcing device to provide the required
perturbations.

The rod is driven in an impulse mode. Each impulse contains a train of five cycle
oscillations at a frequency of 1.7 Hz, which is close to the most amplified frequency of
the wake. The response of the flow system to the pulse train is measured by LDA at
different streamwise locations along the Y /D = 0.5 line. The signal is phase-averaged.
The phase reference is based on the electronic signal that drives the oscillating rod.
Slight phase jitters between the phase reference and the velocity fluctuations were
observed.

Figure 21 shows the pulse train response at (X/D, Y /D) = (3.0, 0.5) in the wake
flow at Re = 1600 when suction speed Us/U∞ = 0.75 (where U∞ = 16.0 cm s−1)
is applied at the trailing edge. More than five cycle oscillations with non-constant
amplitude are observed. This results from the combined response of the solid rod
and the flow to the original driving signal. The wake is globally stable at this suction
speed. Figure 22 shows the spatio-temporal evolution of the pulse train obtained
along Y /D = 0.5 in the convective stability region. The convective nature is obvious.
The convection speed is 12.5 cm s−1 which is 0.78 of the free-stream speed. A slight
growth of the signal is shown from the first measuring station to the second station.
The amplitude of the phase-averaged signal decays slowly, which is believed to be
caused by the phase jitters between the driving signal and the velocity pulse train
arriving at the measuring station. We therefore introduce a different technique in the
following section to clarify this phenomenon.

5.6. The convective neutrally stable flow

For perturbations applied in a steady manner, the evolution of narrow-band energy
at a specific frequency f across the velocity shear region, E[u′(f)], can be used to
indicate the growth or decay of the perturbations along the streamwise direction (Ho
& Huang 1982). E[u′(f)] is based on the spectral analysis which is not sensitive to
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Figure 23. Energy content E(u′(f)) at the most unstable frequency fm = 1.8438 Hz for Us/U∞ = 0
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the phase jitters;

E[u′(f)] =

∫ ∞
−∞

[u′(f)]2 dY , (8a)

where [u′(f)]2 is the narrow-band energy at the frequency f and can be evaluated
from the energy spectrum G[f] at the location (X,Y ) by the following equation:

[u′(f)]2 =

∫ f+df

f−df

G(f1) df1, (8b)

where df equals 0.031 Hz.
When suction is not applied, the spatial variation of E[u′(f)] at the unforced fun-

damental frequency fm(= 1.8438 Hz) is shown in figure 23. Exponential growth of
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Figure 24. Sketch of frequency selection criteria: XI , initial resonance (Monkewitz & Nguyen);
XP , maximum absolute growth rate (Pierrehumbert); Xk , transition point (Koch).

the disturbances is observed as expected. In the other case, a supercritical suction,
Us/U∞ = 0.75, stabilized the wake. The energy content E[u′(f)] at the forcing fre-
quency ff( = 1.7 Hz) in the Us/U∞ = 0.75 case has a very small amplification rate
initially and then remains almost at a constant level. The non-parallel flow caused
by suction not only stabilizes the absolute instability but also significantly affects the
downstream wake region. The wake flow becomes convectively neutrally stable.

6. The selection of instability frequency
6.1. Instability frequency and the selection criteria

From an early work on the examination of the plane wake behind the sharp trailing
edge of a flat plate (Masselin & Ho 1985), it was found that the wake vortex
passage frequency is the same as the one predicted by the linear spatial stability
analysis based upon the velocity profile right at the sharp trailing edge of the splitter
plate. The frequencies calculated from downstream velocity profiles do not fit the
measured value. After the absolute–convective instability concept was introduced
(Huerre & Monkewitz 1985), the physical mechanism governing the above-mentioned
phenomenon became clear. The unstable wake is self-excited by the absolute instability
in the near-wake region. In the case of a wake developed from a sharp trailing edge,
the absolute instability region is very short. Hence, the frequency is likely to be
determined by the velocity profile at the trailing edge. In the present experiment, a
finite absolutely unstable zone exists. When the suction speed is below the threshold
suction, the length of the absolutely unstable region and the amplification rate of the
instability vary with the magnitude of suction. The instability frequency must be a
function of the suction speed. The question is how the global frequency is selected in
a finite absolutely unstable region.

Several researchers have investigated the selection mechanism of the instability
frequency in a wake flow (Pierrehumbert 1984; Koch 1985; Monkewitz & Nguyen
1987). They have suggested different criteria for the frequency selection process, based
on parallel flow analysis. Pierrehumbert (1984) argued that the flow is dominated by
the fastest growing resonance between the downstream and the upstream instability
waves. The global response is determined by the maximum growth rate location, Xp,
as shown schematically in figure 24. Therefore, the measured frequency is predicted to
be equal to the real part of the branch-point frequency at the location Xp, ω

(D)
0r (Xp).

Koch (1985), on the other hand, suggested that the transition point in the flow
where the branch-point frequency is real acts as an effective ‘reflector’ for the instability
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waves of that particular frequency. Then, the global response is dominated by a local
resonance occurring at the transition from the local absolute to the local convective
instability. Hence, the global response is determined by the absolute frequency at the
transition point Xk where ω(D)

0i (Xk) = 0 which is shown in figure 24. In Hanneman
& Oertel (1989), the global frequency from their numerical simulations agrees well
with the local absolute frequency predicted by Koch’s criterion. Oertel (1990) in his
review paper showed that the von Kármán vortex street is still dominated by the
locally hydrodynamic resonance in the absolutely unstable region at the supercritical
Reynolds number even though the Kármán vortex street is in a nonlinear saturated
state at that Reynolds number.

Monkewitz & Nguyen (1987) proposed the ‘initial resonance criterion’. This crite-
rion suggests that the (non-parallel) wake is dominated by the first local resonance
with a non-negative absolute growth rate encountered by the flow. Monkewitz &
Nguyen compared this criterion with many experimental results. The predicted fre-
quency agreed with the measured frequency. Therefore, they concluded that the
vortex shedding frequency is determined from the most upstream absolutely unstable
location, XI (figure 24).

From our experimental data, the instability frequency selected by the initial res-
onance criterion (Monkewitz & Nguyen 1987) can be obtained by plotting the
frequency ω(D)

0r at the location X/D = 0 for different suction speeds (figure 16b). The
predicted frequencies are shown in figure 25. According to figure 16(a), the maximum
absolute growth rate occurs at X/D = 0. Therefore, the global frequency based on
Pierrehumbert’s suggestion is the same as that predicted from the initial resonance
criterion. From the same sets of data (figure 16), the predicted frequency according
to Koch’s criterion can be obtained from the real part of the transition-point fre-
quency, ω(D)

0r (Xk), at ω(D)
0i (Xk) = 0. The non-dimensional frequencies St, defined as

St = ω
(D)
0r = 2πfD/U∞, at various suction speeds predicted by the above-mentioned

frequency selection criteria are plotted in figure 25. The experimentally determined
frequencies are also superimposed on the same figure for easy comparison. It is found
that the vortex shedding frequencies agree with Pierrehumbert’s criterion as well as
with the initial resonance criterion (Monkewitz & Nguyen 1987).
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6.2. Nonlinear analysis of frequency selection

The instability waves initially amplify exponentially in time at the linear growth rate,
ωGi. At large times, the instability evolves into a nonlinear instability regime (Stuart
1971) and reaches a nonlinear saturation state. In a flow with an extended absolute
instability region coupled with a convectively unstable region, it would be interesting
to examine the effect of nonlinearity. The dynamics of a weakly nonlinear flow is
described by the Stuart–Landau equation:

dA

dt
= [ωGi − iωGr](Us)A− [lr + ili]|A|2A+ O(|A|5), (9)

where A is the amplitude level, ωGi is the linear temporal global growth rate, ωGr is
the corresponding frequency, and l is the Landau constant. Taylor expanding ωGi, ωGr
and the saturation frequency ωsat near the threshold suction speed UTs , the following
approximations can be obtained:

ωGi =

[
dωGi
dUs

(UTs )

]
[Us −UTs ] = α[UTs −Us], (10a)

ωGr − ωsat =

[
dωGr
dUs

(UTs )− dωsat

dUs

(UTs )

]
[Us −UTs ] = β[Us −UTs ], (10b)

lr + ili = [lr + ili](UTs ), (10c)

where one can obtain (10b) by subtracting two Taylor expansion equations of ωGr and
ωsat and eliminating the high-order terms since ωGr and ωsat coincide for Us = UTs .
The growth rate ωGi represents a temporal growth rate. For a positive growth rate, a
nonlinear saturation state will be reached.

By setting dA/dt = 0 in (9), the saturation or limit-cycle amplitude |A|sat for
Us < UTs is obtained as

ωGi − iωGr = [lr + ili]|A|2sat , (11a)

therefore

|A|sat =

[
ωGi

lr

]1/2

=

[
−ωGr

li

]1/2

. (11b)

Introduce the modulus and the phase of A, A = |A| exp [−iφ], into the Stuart–Landau
equation. Equation (9) becomes

1

|A|
d|A|
dt

= ωGi − lr|A|2 = ωGi

[
1− |A|

2

|A|2sat

]
, (12a)

−dφ

dt
= −ωGr − li|A|2 = −ωGr − ωGi

[
li

lr

] [ |A|2
|A|2sat

]
. (12b)

When the amplitude |A| reaches the saturation amplitude |A|sat , the frequency dφ/dt
equals the saturated (measured) frequency, ωsat , i.e. dφ/dt = ωsat . Equation (12b)
becomes

ωGr − ωsat = −ωGi
[
li

lr

]
. (13)

By using (13), (10a) and (10b), the ratio li/lr can be obtained as[
li

lr

]
= −ωGr − ωsat

ωGi
= −β

α
. (14)
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Figure 26. Coefficients of Stuart–Landau equation (Re = 1600).

Equation (14) shows that the ratio li/lr can be determined by α and β which are
defined in (10a) and (10b) respectively. Figure 25 shows the polynomial curve fitting
of non-dimensional real and imaginary parts of the global frequency (ω(D)

Gr and ω
(D)
Gi

obtained in § 5.3), as well as the saturated vortex shedding frequency ωsat (= 2πfD/U∞
measured by LDA) at different suction speeds. The coefficient of the Stuart–Landau
equation is obtained as [

li

lr

]
≈ −0.6 (15)

for the plane wake with base suction.
From the Stuart–Landau model, the nonlinear saturated frequency can be calculated

from (13) as

ωsat = ωGr + ωGi

[
li

lr

]
= ωGr − ωGi β

α
. (16)

By taking account of frequency shift due to nonlinearity and the fact that the flow
with suction is not parallel, (16) has made the connection between the predicted
global frequency and the observed shedding frequency in the wake flow with suction
speed below the threshold value. The vortex shedding frequency predicted by (16)
is plotted in terms of Strouhal number St, which is marked as ω(D)

Gr − ω(D)
Gi β/α in

figure 25. Both the linear (Pierrehumbert 1984; Monkewitz & Nguyen 1987) and
nonlinear stability analysis provide the same trend of decreasing resonance global
frequency with increasing suction speeds. However, the quantitative prediction seems
worse compared to the criteria of Pierrehumbert and Monkewitz & Nguyen. At this
point, why the vortex shedding frequency can be predicted better by simply using the
velocity profile at location X/D = 0 is still unclear. It is believed that the nonlinear
shedding frequency prediction should predict a more ‘realistic’ frequency since it takes
into account the frequency shift due to nonlinearity and the fact that the flow with
suction is non-parallel. However, computational errors can be easily introduced into
the nonlinear shedding frequency prediction due to its complicated procedures. For
example, (13) states that ω(D)

Gr is equal to ωsat when ω
(D)
Gi equals zero. In figure 26,
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the real part of the global frequency ω
(D)
Gr equals to the saturated (or measured)

vortex shedding frequency ωsat (= 2πfD/U∞) at the suction speed Us/U∞ = 0.4,

instead of 0.46 where ω(D)
Gi = 0. This discrepancy in determining the coefficients α

and β will cause errors in the prediction of the nonlinear shedding frequency. In the
present results, the quantitative comparison between the predicted global frequency
and the observed shedding frequency in the wake flow strongly suggests that the
initial velocity profile plays a very important role in the semi-infinite flow domain.
The nearby frequencies related to the initial velocity profile amplified globally in the
nonlinear and non-parallel global mode selection process.

6.3. Sensitivity to external perturbations

In a self-excited flow such as a wake, it is interesting to find out how the flow
responds to the external disturbances, artificial perturbations or background noise.
We will examine this problem in the frequency domain. The stabilizing rod placed
inside the absolute instability region, X/D = 0.5, Y /D = 0, serves as a forcing
device to generate small-amplitude perturbations in the absolutely unstable region
of the wake flow. The amplitude (= 0.05D) used in the present forcing studies is
below the required threshold level for lock-in states. The forcing frequency, ff , of
the rod is chosen to be close to the most unstable frequency or the fundamental
vortex shedding frequency fm of the wake; fm is determined experimentally in the
wake without suction as shown in figure 27(a). The forcing frequencies, ff , were
varied from 0.9 to 2.4 Hz, covering a range from about ( 1

2
) fm to 1.3 fm in the tested

range. The energy spectrum measured at a location fairly far downstream from the
absolutely unstable region, X/D = 5.0, Y /D = 1.0, represents the response of the
unstable flow to the forcing. The spectral peak is defined as the response frequency,
fr . When Us/U∞ = 0, the energy spectra at different forcing frequencies are plotted
in figure 27. In figure 27(a), the peak frequency of the energy spectrum corresponds
to the fundamental frequency in the unforced wake flow without suction, fm. When
the control rod vibrator oscillates at 1.5 Hz and at 2.0 Hz, the spectra are shown in
figures 27(b) and 27(c) respectively. The response frequencies in both cases remain
unchanged and the peak frequencies are the same as the fundamental frequency in
figure 27(a), i.e. the flow does not respond to the forcing. Similar results were found
in the case of Us/U∞ = 0.25, where the fundamental frequency is reduced to 1.61 Hz
(figure 29). When the suction speed reaches Us/U∞ = 0.56, unlike the subcritical
suction cases in figure 27, the energy spectrum in the unforced wake flow with
supercritical suction (figure 28a) does not have a clear peak at the most amplified
frequency. The self-excited instability disappears and the wake flow becomes stable.
The energy spectra at different forcing conditions start to change. Figures 28(b) and
28(c) show that the spectral peaks are located at the forcing frequency. The wake flow
responds to the forcing under the supercritical suction condition. The relationship
between the response frequency and the forcing in this suction range is plotted in
figure 29.

These results clearly show the difference between a self-excited wake and an
externally excited wake. When the wake is self-excited, the frequency is dominated by
the intrinsic one determined by the global resonance (for small excitation amplitudes).
The external perturbations cannot shift the wake frequency and even have no effect
on the energy spectra, which correspond to the narrow-band energy of velocity
fluctuation at a specific frequency (figure 27). It is also interesting to see that in the
energy spectrum of figure 27(b) no peak at all is visible at the forcing frequency
of 1.5 Hz. However, in the energy spectrum of figure 28(b), the magnitude of the
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Figure 27. Energy spectra at (X/D, Y /D) = (5.0, 1.0) behind the plane wake at Re = 1600 with
varying forcing frequency: (a) ff = 0 Hz; (b) ff = 1.5 Hz; (c) ff = 2.0 Hz.

peak at 1.5 Hz is significantly above the noise level of the energy spectrum of
figure 27(b). Since the same amount of energy at the forcing frequency of 1.5 Hz was
introduced into figures 27(b) and 28(b), this suggests that the energy at the forcing
frequency 1.5 Hz in figure 27(b) is diminished and transferred to the energy at the
global resonance frequency. The peak energy in figure 27(b) is slightly higher than
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(c) ff = 2.0 Hz.

that in figure 27(a) through the complicated mode interaction or energy transfer in
an absolutely unstable flow. When the global instability is turned off, the artificial
disturbance becomes detectable and convects in the streamwise direction even though
the amplitude will not change in this neutrally stable flow (figure 23). This experiment
provides clear evidence of the wake’s sensitivity to external noise in a wake.
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7. Summary
Base suction effectively reduces the size of the absolutely unstable region and

forms a non-parallel flow region in the near wake. With the present experiments a
threshold suction velocity is found and is approximately equal to half the free-stream
velocity. We have made a quantitative link between our plane wake with base suction
experiments and weakly non-parallel theory (Monkewitz et al. 1993). The threshold
velocity can be accurately predicted by global stability analysis with the non-parallel
correction. Below the threshold suction, the wake is dominated by self-excitation and
is not sensitive to external disturbances. In the case of supercritical suction, the non-
parallel flow effect drives the global instability into the stable regime. The entire flow
is neutrally stable and a vortex street is not observed. Disturbances convect with the
flow at 78% of the free-stream velocity and without much change of the amplitude.

In additional to similarities with the present work, Schumm, Berger & Monkewitz
(1994), have applied the theory of Monkewitz et al. (1993) using computational data
for the wake of a plate (Hanneman & Oertel 1989), and the cylinder wake (Morzynski
& Thiele 1993). The discrepancy may account for the difference between the doubly-
infinite flow domain feature in the wake of a plate and the semi-infinite flow domain
in a plane wake with base suction (Monkewitz et al. 1993). In the wake of a plate,
according to the analysis in a doubly-infinite flow domain, the saddle point of the
complex absolute frequency governs the global behaviour. However, in a plane wake
with base suction the global modes are dominated by the absolute frequency at the
plate trailing edge. For this reason, we can accurately determine the global modes on
the real x-axis in the analysis of our flow experiments.

The authors appreciate Professor Peter Monkewitz’s valuable suggestions. This
work is mainly supported by a grant from the Office of Naval Research. The early
phase of the research was supported by the Air Force Office of Scientific Research.
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